

Introduction to the Magnetism of Lanthanides Ions

Kevin Bernot Institut des Sciences Chimiques de Rennes (ISCR)

Indo – French School, Bangalore, 2018, K. BERNOT

Basics of Rare-Earth & Lanthanide Elements

Rare-Earth & Lanthanides elements

Rare-Earths (RE)

Lanthanides (Ln)

Lanthanoids

Ceric lanthanoids (Ce-Eu) \rightarrow « big lanthanides » Yttric lanthanoids (Gd-Lu) \rightarrow « small lanthanides »

Think about periodic table in 3D...!

Rare-Earth elements are not...rare

http://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements

Indo – French School, Bangalore, 2018, K. BERNOT

Rare-Earth elements are rare...in every mine

		Teneur de	Concentrés	miniers (teneu	rs* en %)	Cor	centrés chimique	es (teneurs* en %)		
Oxydes de TR, Sc, Th et U	Formule	l'écorce terrestre (en ppm)	Monazite	Bastnaésite	Loparite	Bayan Obo (Chine)	Mountain Pass (Etats -Unis)	Central Lanthanide Deposit, Mount Weld (Australie)	Prix des oxydes, en \$/kg, 99 % de pureté, en juillet 2016	
Total oxyde de TR	-	150	~ 60	60-70	~ 32	100	100	100	ch junici 2010	
Lanthane	La ₂ O ₃	18	24	32	28	23,0	34,0	23,88	5,11	
Cérium	CeO ₂	46	46	49	57	50,0	48,8	47,55	5,2 ¹	
Praséodyme	Pr ₆ O ₁₁	5,5	5	4	4	6,2	4,2	5,16	81,3 ¹	
Néodyme	Nd ₂ O ₃	24	17	13,5	9	18,5	11,7	18,13	511	
Samarium	Sm ₂ O ₃	6,5	2,5	0,5	0,9	0,8	0,79	2,44	15 ¹	
Europium	Eu ₂ O ₃	0,5	0,05	0,1	0,1	0,2	0,13	0,53	285 ¹	
Gadolinium	Gd_2O_3	6,4	1,5	0,3	0,2	0,7	0,21	1,09	45 ¹	
Terbium	Tb ₄ O ₇	0,9	0,04	0,01	0,07	0,1		0,09	559 ¹	
Dysprosium	Dy ₂ O ₃	5	0,7	0,03	0,09	0,1		0,25	259 ¹	
Holmium	Ho ₂ O ₃	1,2	0,05	0,01	0,03	-		0,03	82 ²	
Erbium	Er ₂ O ₃	4	0,2	0,01	0,07			0,06	371	
Thulium	Tm ₂ O ₃	0,4	0,01	0,02	0,07	-		0,01	275 ²	
Ytterbium	Yb ₂ O ₃	2,7	0,1	0,01	0,3	-		0,03	65 ²	
Lutécium	Lu ₂ O ₃	0,8	0,04	0,01	0,05	-		0	1 550 ²	
Yttrium	Y ₂ O ₃	28	2,4	0,1	0,15	-	0,12	0,76	341	
Thorium	ThO ₂	10	6,7	0,35	0,65	0,032				
Uranium	U ₃ O ₈	4	0,3	< 0,05						
Scandium	Sc ₂ O ₃	16				-			2 150 ²	

Rare-Earth elements are rare...in every mine

Element	Upper crust	Middle crust	Lower crust	Total crust	Composition of the Earth's crust	Bulk composition of the Earth
	ppm					
Sc	14	19	31	21.9	20 ppm	10.1 ± 2 ppm
Y	21	20	16	19	31.5 ppm	2.4 ± 0.2 ppm
Cu	28	26	26	27	68 ppm	$64.7 \pm 5 \text{ ppm}$
La	31	24	8	20	35 ppm	$415 \pm 10 \text{ ppb}$
Ce	63	53	20	43	68 ppm	$1088 \pm 20 \text{ ppb}$
Pr	7.1	5.8	2.4	4.9	9.5 ppm	165 ± 5 ppb
Nd	27	25	11	20	40 ppm	$814 \pm 10 \text{ ppb}$
Sm	4.7	4.6	2.8	3.9	7.5 ppm	259 ± 3 ppb
Dy	3.9	3.8	3.1	3.6	6.2 ppm	$424 \pm 10 \text{ ppb}$
Tb	0.7	0.7	0.48	0.6	1.2 ppm	$66.6 \pm 5 \text{ ppb}$
Lu	0.31	0.4	0.25	0.3	0.81 ppm	$42.5 \pm 2 \text{ ppb}$
Pt	0.5	0.85	2.7	1.5	0.004 ppm	$1562 \pm 40 \text{ ppb}$
Au	1.5	0.66	1.6	1.3	0.0041 ppm	$102 \pm 20 \text{ ppb}$

Indo – French School, Bangalore, 2018, K. BERNOT

Rare-earth elements are key ingredients....

Rare earths usage by application, in % (Curtis, 2010).^a

Application	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Y	Other
Magnets			23.4	69.4			2	0.2	5		
Battery alloys	50	33.4	3.3	10	3.3						
Metallurgy	26	52	5.5	16.5							
Auto catalysts	5	90	2	3							
FCC	90	10									
Polishing powders	31.5	65	3.5								
Glass additives	24	66	1	3						2	4
Phosphors	8.5	11				4.9	1.8	4.6		69.2	
Ceramics	17	12	6	12						53	
Others	19	39	4	15	2		1			19	

^a The percentages are estimated average consumption distribution by application; the actual distribution varies from manufacturer to manufacturer.

Zepf, V., *Rare Earth Elements*; Springer-Verlag Berlin Heidelberg, **2013** Binnemans, K.; *Journal of Cleaner Production* **2013**, *51*, 1-22.

Indo – French School, Bangalore, 2018, K. BERNOT

Rare-earth elements are key ingredients....

Typical dysprosium content in NdFeB magnets for different applications (Constantinides, 2011).

Application	Typical Dy content (%) ^a
Hybrid and electric cars	8.7
Generators	6.4
Wave guides: TWT, undulators, wigglers	6.4
Electric bikes	4.1
Electric storage systems	4.1
Magnetic brakes	4.1
Magnetically levitated transportation	4.1
Motors, industrial, cars, etc.	4.1
Pipe inspection systems	4.1
Relays and switches	4.1
Reprographics	4.1
Torque coupled drives	4.1
Wind turbines	4.1
Gauges	2.8
Hysteresis clutch	2.8
Magnetic separators	2.8
Magnetic refrigerators	1.4
MRI scanners	1.4
Sensors	1.4
HDDs, CDs, DVDs	0.0
Transducers and loudspeakers	0.0
Toys and gadgets	0.0

^a % of Dy compared to the other rare earths.

Rare-Earth elements cycle

Zepf, V., Rare Earth Elements; Springer-Verlag Berlin Heidelberg, 2013

Indo – French School, Bangalore, 2018, K. BERNOT

Rare-Earth elements (re)cycle

Recycling potentials for REE from magnets, nickel-metal-hydride batteries and phosphors.

REE application	Estimated REE stocks in 2020 (tons)	Estimated average lifetime (years)	Estimated REE old scrap in 2020 (tons)	Pessimistic scenario: recycled REE in 2020 (tons)	Optimistic scenario: recycled REE in 2020 (tons)
Magnets	300,000	15	20,000	3300	6600
Lamp Phosphors	25,000	6	4167	1333	2333
Nickel-metal-hydride batteries	50,000	10	5000	1000	1750
Total	375,000		29,167	5633	10,683

Binnemans, K.; Journal of Cleaner Production 2013, 51, 1-22.

Indo – French School, Bangalore, 2018, K. BERNOT

The chemists periodic table !

THE PERIODIC TABLE OF OXIDATION STATES

The chemists periodic table !

57 LARINASM 138.905	55 CERIUM 140.115	59 PRASECOVINUM 140.908	60 NCC HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD	61 PROMETREUM (144.000)	62 SAMARIN 150.362	63 63 64 64 64 66 66 66 66 66 66 66 66 66 66	17 3 18 1 18 125 18	0 66 DY 075PR05UM 162.500	67 HOLMOM 164.930	68 68 68 67.259	69 Thrulum 168.934	20 70 976 971 173.054	71 100 174.967
For tri	valent l	lantha	nides io	ns : [Xe]	∣4f ⁿ								
n= 0	1	2	3	4	5	6 7	8	9	10	11	12	13	14
	1	Ln	χp	I_3	I ₁₋₃	$E^{0}_{r,3-0}$	$E^{0}_{r,3-2}$	_	1.1	1	2	21	
		La	1.10	1850	3455	-2.379	-3.1	1.4					
		Pr	1.12	2086	3523 3627	-2.356	-2.92(8) -2.84(6)						
		Nd Pm	1.14 1.13	2130 2150	3694 3738	-2.323 -2.30	-2.62(5) -2.44(5)	24	24	\sim	10 C	5.1	
		Sm Eu	1.17 1.2	2260 2404	3871 4035	-2.304 -1.991	-1.50(1) -0.34(1)	М	ost sta	ble o	kidatio	n stat	e is +III
		Gd Th	1.20	1990 2114	3750 3790	-2.279 -2.28	-2.85(7) -2.83(7)						
		Dy	1.22	2200	3898	-2.295	-2.56(5) -2.79(6)						
		Er	1.25	2194	3934	-2.331	-2.87(8)						
		Yb	1.25	2285 2415	4045 4194	-2.319 -2.19	-2.22(5) -1.18(1)						
	01	Lu Y	1.27 1.22	2033 1980	3896 3777	-2.28 -2.372	n.a. n.a.						

Indo – French School, Bangalore, 2018, K. BERNOT

Rare-Earth main properties

Ln	χp	I_3	I_{1-3}	$E_{r,3-0}^{0}$	$E_{r,3-2}^{0}$	ΔH_h^0	$\log^* \beta_{11}$	pН	<i>r</i> _i (6)	$r_i(9)$	r_i (12)
La	1.10	1850	3455	-2.379	-3.1	-3326	-9.01	7.47	103	122	136
Ce	1.12	1949	3523	-2.336	-2.92(8)	-3380	-10.6	7.10	101	120	134
Pr	1.13	2086	3627	-2.353	-2.84(6)	-3421	-8.55	6.96	99	118	132
Nd	1.14	2130	3694	-2.323	-2.62(5)	-3454	-8.43	6.78	98	116	130
Pm	1.13	2150	3738	-2.30	-2.44(5)	-3482	n.a.	n.a.	97	114	128
Sm	1.17	2260	3871	-2.304	-1.50(1)	-3512	-8.34	6.65	96	113	127
Eu	1.2	2404	4035	-1.991	-0.34(1)	-3538	-8.31	6.61	95	112	125
Gd	1.20	1990	3750	-2.279	-2.85(7)	-3567	-8.35	6.58	94	111	124
Tb	1.1	2114	3790	-2.28	-2.83(7)	-3600	-8.16	6.47	92	110	123
Dy	1.22	2200	3898	-2.295	-2.56(5)	-3634	-8.10	6.24	91	108	122
Ho	1.23	2204	3924	-2.33	-2.79(6)	-3663	-8.04	6.20	90	107	121
Er	1.24	2194	3934	-2.331	-2.87(8)	-3692	-7.99	6.14	89	106	119
Tm	1.25	2285	4045	-2.319	-2.22(5)	-3717	-7.95	5.98	88	105	118
Yb	1.1	2415	4194	-2.19	-1.18(1)	-3740	-7.92	5.87	87	104	117
Lu	1.27	2033	3896	-2.28	n.a.	-3759	-7.90	5.74	86	103	116
Y	1.22	1980	3777	-2.372	n.a.	-3640	-8.36	n.a.	90	108	n.a.

Table 1. Selected properties of lanthanides, yttrium, and their trivalent ions.

Notes: Key: χ_P = Pauling's electronegativity; I_3 = third ionization energy (rounded to 1 kJ mol⁻¹) [8]; I_{1-3} = sum of the first three ionization energies (rounded to 1 kJ mol⁻¹) [8]; $E_{r,3-0}^0$ = standard redox potential Ln^{+3}/Ln^0 in V at pH 0 [12]; $E_{r,3-2}^0$ = redox potential Ln^{+3}/Ln^{+2} in V [13], value for La is calculated; ΔH_h^0 = standard hydration enthalpies in kJ mol⁻¹ calculated by semi-empirical methods (Born–Haber cycles) [14]; $*\beta_{11} = [(LnOH)^{2+}][H^+]/[Ln^{3+}]$, ionic strength = 0.3 M [15]; pH = pH at which hydroxide precipitation starts in Ln(NO₃)₃ solutions 0.1 M in water [16]; $r_t(n) =$ ionic radii for coordination numbers n = 6, 9, and 12 in pm [17].

Ionic radii and coordination numbers

The relationship between ionic radius and atomic number of lanthanide ions

- Trend on the series,
- Decrease of r_i by 0.2 Å from La to Lu \rightarrow lanthanide contraction
- "gadolinium break"

J.-C. G. Bünzli *J. Coord. Chem*. 2014, 67.

Hydratation enthalpies

- Very large hydratation enthalpies (most of Ln salts are hygroscopic)
- Trend along the series
- Ligands have to substitute water molecules
- Ln^{III} ions have hard Lewis character \rightarrow hard bases for ligands such as carboxylates, etc...

Electronegativity

Ln	χp	I_3	I_{1-3}	$E^{0}_{r,3-0}$	$E^{0}_{r,3-2}$	ΔH_h^0	$\log^* \beta_{11}$	pН	<i>r</i> _i (6)	$r_i(9)$	r _i (12)
La	1.10	1850	3455	-2.379	-3.1	-3326	-9.01	7.47	103	122	136
Ce	1.12	1949	3523	-2.336	-2.92(8)	-3380	-10.6	7.10	101	120	134
Pr	1.13	2086	3627	-2.353	-2.84(6)	-3421	-8.55	6.96	99	118	132
Nd	1.14	2130	3694	-2.323	-2.62(5)	-3454	-8.43	6.78	98	116	130
Pm	1.13	2150	3738	-2.30	-2.44(5)	-3482	n.a.	n.a.	97	114	128
Sm	1.17	2260	3871	-2.304	-1.50(1)	-3512	-8.34	6.65	96	113	127
Eu	1.2	2404	4035	-1.991	-0.34(1)	-3538	-8.31	6.61	95	112	125
Gd	1.20	1990	3750	-2.279	-2.85(7)	-3567	-8.35	6.58	94	111	124
Tb	1.1	2114	3790	-2.28	-2.83(7)	-3600	-8.16	6.47	92	110	123
Dy	1.22	2200	3898	-2.295	-2.56(5)	-3634	-8.10	6.24	91	108	122
Ho	1.23	2204	3924	-2.33	-2.79(6)	-3663	-8.04	6.20	90	107	121
Er	1.24	2194	3934	-2.331	-2.87(8)	-3692	-7.99	6.14	89	106	119
Tm	1.25	2285	4045	-2.319	-2.22(5)	-3717	-7.95	5.98	88	105	118
Yb	1.1	2415	4194	-2.19	-1.18(1)	-3740	-7.92	5.87	87	104	117
Lu	1.27	2033	3896	-2.28	n.a.	-3759	-7.90	5.74	86	103	116
Y	1.22	1980	3777	-2.372	n.a.	-3640	-8.36	n.a.	90	108	n.a.

Table 1. Selected properties of lanthanides, yttrium, and their trivalent ions.

Notes: Key: χ_P = Pauling's electronegativity; I_3 = third ionization energy (rounded to 1 kJ mol⁻¹) [8]; I_{1-3} = sum of the first three ionization energies (rounded to 1 kJ mol⁻¹) [8]; $E_{r,3-0}^0$ = standard redox potential Ln^{+3}/Ln^0 in V at pH 0 [12]; $E_{r,3-2}^0$ = redox potential Ln^{+3}/Ln^{+2} in V [13], value for La is calculated; ΔH_h^0 = standard hydration enthalpies in kJ mol⁻¹ calculated by semi-empirical methods (Born–Haber cycles) [14]; $*\beta_{11} = [(LnOH)^{2+}][H^+]/[Ln^{3+}]$, ionic strength = 0.3 M [15]; pH = pH at which hydroxide precipitation starts in Ln(NO₃)₃ solutions 0.1 M in water [16]; $r_4(n) =$ ionic radii for coordination numbers n = 6, 9, and 12 in pm [17].

Electronegativity

Similar electronegativities \rightarrow difficult separation of each RE in RE ore.

Electronegativity

Stability toward hydroxides (Ln(OH)₂, Ln(OH)₃) and oxo-hydroxides is different

Ln	χp	I_3	I_{1-3}	$E^{0}_{r,3-0}$	$E_{r,3-2}^{0}$	ΔH_h^0	$\log^* \beta_{11}$	pН	<i>r</i> _i (6)	$r_i(9)$	r _i (12)
La	1.10	1850	3455	-2.379	-3.1	-3326	-9.01	7.47	103	122	136
Ce	1.12	1949	3523	-2.336	-2.92(8)	-3380	-10.6	7.10	101	120	134
Pr	1.13	2086	3627	-2.353	-2.84(6)	-3421	-8.55	6.96	99	118	132
Nd	1.14	2130	3694	-2.323	-2.62(5)	-3454	-8.43	6.78	98	116	130
Pm	1.13	2150	3738	-2.30	-2.44(5)	-3482	n.a.	n.a.	97	114	128
Sm	1.17	2260	3871	-2.304	-1.50(1)	-3512	-8.34	6.65	96	113	127
Eu	1.2	2404	4035	-1.991	-0.34(1)	-3538	-8.31	6.61	95	112	125
Gd	1.20	1990	3750	-2.279	-2.85(7)	-3567	-8.35	6.58	94	111	124
Tb	1.1	2114	3790	-2.28	-2.83(7)	-3600	-8.16	6.47	92	110	123
Dy	1.22	2200	3898	-2.295	-2.56(5)	-3634	-8.10	6.24	91	108	122
Ho	1.23	2204	3924	-2.33	-2.79(6)	-3663	-8.04	6.20	90	107	121
Er	1.24	2194	3934	-2.331	-2.87(8)	-3692	-7.99	6.14	89	106	119
Tm	1.25	2285	4045	-2.319	-2.22(5)	-3717	-7.95	5.98	88	105	118
Yb	1.1	2415	4194	-2.19	-1.18(1)	-3740	-7.92	5.87	87	104	117
Lu	1.27	2033	3896	-2.28	n.a.	-3759	-7.90	5.74	86	103	116
Y	1.22	1980	3777	-2.372	n.a.	-3640	-8.36	n.a.	90	108	n.a.

Table 1. Selected properties of lanthanides, yttrium, and their trivalent ions.

Notes: Key: χ_P = Pauling's electronegativity; I_3 = third ionization energy (rounded to 1 kJ mol⁻¹) [8]; I_{1-3} = sum of the first three ionization energies (rounded to 1 kJ mol⁻¹) [8]; $E_{r,3-0}^0$ = standard redox potential Ln⁺³/Ln⁰ in V at pH 0 [12]; $E_{r,3-2}^0$ = redox potential Ln⁺³/Ln⁺² in V [13], value for La is calculated; ΔH_h^0 = standard hydration enthalpies in kJ mol⁻¹ calculated by semi-empirical methods (Born–Haber cycles) [14]; $*\beta_{11} = [(LnOH)^{2+}][H^+]/[Ln^{3+}]$, ionic strength = 0.3 M [15]; pH = pH at which hydroxide precipitation starts in Ln(NO₃)₃ solutions 0.1 M in water [16]; $r_4(n) =$ ionic radii for coordination numbers n = 6, 9, and 12 in pm [17].

J.-C. G. Bünzli *J. Coord. Chem.* 2014, 67.

Coordination numbers

Coordination number

Figure 1. Distribution of coordination numbers among rare earth complexes from 1389 crystal structures published between 1935 and 1995 [9].

 $[Nd(N(SiMe_3)_2)_3]$

[La(NO₃)₆]³⁻

Coordination polyhedra for CN=8

SAPR

BTP

HPY

GBF

TT

HBPY

Ideal shape	Abbreviation	Symmetry
octagon	OP	D _{sh}
cube	CU	O_k
triakis-tetrahedron	TT	T_d
square antiprism	SAPR	D_{44}
snub disphenoid	J-SD	T_d
triangular dodecahedron	DD	D_{24}
gyrobifastigium	J-GBF	D_{24}
biaugmented trigonal prism	J-BTP	$C_{2\nu}$
	s-BTP	$C_{2\nu}$
elongated trigonal bipyramid	J-ETBP	D_{3k}
	s-ETBP	D_{3k}
heptagonal pyramid	HPY	D_{7h}
hexagonal bipyramid	HBPY	D_{6k}

See also SHAPE program from Univ Barcelona

S. Alvarez, P. Alemany, M. Llunel

Stability constants for the formation of 1:1 complexes in water at 298 K vs. reciprocal ionic radii for coordination number 9.

 Polydentate ligands vs monodetate ligands: dtpa complexes are 20 orders of magnitude more stable than acetates

 Entropic stabilization

Macrocyclic Lanthanide Chemistry

Figure 4. Stability constants of 1:1 coronates in propylene carbonate at 298 K and $\mu = 0.1$ M Et₄NClO₄; drawn from data reported in Ref. [41].

- Variation in cavity dimension (1.7 to 3.2 Å) do not change stability that much (no « lock-and-key » discrimination as with alcaline or 3d ions)
- Variation in the coordinating atoms affords tremendous changes in stability:

 Enthalpic stabilization

Macrocyclic Lanthanide Chemistry

24

[Gd(dota)(H2O)]-

From Magnetochemistry to Molecular Magnetism : The role of lanthanide ions

On the Theory of Spin-Lattice Relaxation in Paramagnetic Salts

> By R. ORBACH Clarendon Laboratory, Oxford

MS. received 4th November 1960

Trivalent rare-earth ions → Magnetic relaxation theory

Orbach, R. Proc. R. Soc. London, Ser. A 1961, 264, 458-484.

On the Theory of Spin-Lattice Relaxation in Paramagnetic Salts

> By R. ORBACH Clarendon Laboratory, Oxford

MS. received 4th November 1960

Trivalent rare-earth ions → Magnetic relaxation theory

Orbach, R. Proc. R. Soc. London, Ser. A 1961, 264, 458-484.

 $(CuSalen)_2Gd(H_2O)_3]^{3+} \rightarrow 3d-4f$ ferromagnetic coupling Bencini, A. et al., J. Am. Chem. Soc. 1985, 107, 8128

 $(CuSalen)_2Gd(H_2O)_3]^{3+} \rightarrow 3d-4f$ ferromagnetic coupling Bencini, A. et al., J. Am. Chem. Soc. 1985, 107, 8128

Indo – French School, Bangalore, 2018, K. BERNOT

Molecular Magnetism

Bedoui, S., Chem. Phys. Lett. 2010, 499, 94.

Clérac, R.; et al., J. Am. Chem. Soc. 2002, 124, 12837

MRI

MST

nature COMMUNICATIONS

ARTICLE

QIP

Institut des

Chimiques

de Rennes

Nanoporous magnets / host-guest systems Maspoch, D., et al. Nat. Mater. 2003, 2, 190

Spintronics

Magnetic activity of MRI agents

Engineering the coupling between molecular spin

Timco, G. A. et al., Nat Nano 2009, 4, 173

Molecular spintronics using single-molecule magnets

gubits by coordination chemistry

Quantum computing

nature nanotechnology

Cucinotta et al., Angew. Chem. Int. Ed. 2012, 51, 1606

ARTICLES

PROGRESS ARTICLE

Bogani, L., et al., Nat. Mater. 2008, 7, 179-186.

in direct magnetocaloric measurements Sub-Kelvin nano-coolers

Received 18 Jun 2014 | Accepted 19 Sep 2014 | Published 22 Oct 2014

Sharples, J. W. et al., Nat Commun 2014, 5

Surfaces

SMM

Molecular

Magnetism

MCE

SCM

SCO

MOF

Benelli, C.; Gatteschi, D.

Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, 2015

Indo – French School, Bangalore, 2018, K. BERNOT

Basics of Magnetism of Trivalent Lanthanide ions

4*f* free ion electronic structure

- Radial dependence of 4f orbitals: shielding by 5s, 5p
- Angular dependence of 4f orbitals: changes with m_L states \rightarrow strong Spin-Orbit coupling
- **Russel-Saunders** coupling scheme: interelectronic repulsion > SO coupling
- J. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, 2015

4*f* free ion electronic structure

- Spins of all electrons are coupled:
- Angular momenta are coupled:
- *L* = 0, 1, 2, 3,....provides S, P, D, F,...
- The total momentum *J* is:

$$(|L - S| \le J \le |L + S|)$$

 $\vec{S} = \sum_{i} \vec{s}_{i}$ $\vec{L} = \sum_{i} \vec{I}_{i}$

3

• A multiplet noted ${}^{2S+1}L_J$ is obtained whose energy is:

$$E\left({}^{2S+1}L_J\right) = (\lambda/2)[J(J+1) - L(L+1) - S(S+1)]$$

0

 $^{2S+1}L_{J} = {}^{6}H_{15/2}$

1

where λ is the spin-orbit coupling constant of the ion

• Ex: Dy^{III}, 4f⁹

$$S=5/2;$$

$$L=5; \Rightarrow H$$

$$J=S+L=15/2$$

4*f* free ion electronic structure

- SO coupling split the terms with same L and S and different J → the lowest lying J multiplet is the "ground state"
- Except for Eu^{III} and Sm^{III}, S.O. is large so magnetic properties of the ion → magnetic properties of the ground state

Ln ³⁺	4f ⁿ	Ground state	gյ	χT (emu mol ⁻¹ K)	First excited state	Energy separation (cm ⁻¹)
Ce	f^1	² F _{5/2}	6/7	0.8	² F _{7/2}	2200
Pr	f^2	$^{3}H_{4}$	4/5	1.6	³ H ₅	2100
Nd	f^3	⁴ I _{9/2}	8/11	1.64	⁴ I _{11/2}	1900
Pm	f^4	⁵ I ₄	3/5	0.9	⁵ I ₅	1600
Sm	f^5	⁶ H _{5/2}	2/7	0.09	⁶ H _{7/2}	1000
Eu	f^6	⁷ F ₀	0		⁷ F ₁	300
Gd	f^7	⁸ S _{7/2}	2	7.88	⁶ P _{7/2}	30,000
Tb	f^8	⁷ F ₆	3/2	11.82	⁷ F5	2000
Dy	f^9	⁶ H _{15/2}	4/3	14.17	⁶ H _{13/2}	-
Но	f^{10}	⁵ I ₈	5/4	14.07	⁵ I ₇	-
Er	f^{11}	⁴ I _{15/2}	6/5	11.48	⁴ I _{13/2}	6500
Tm	f^{12}	³ H ₆	7/6	7.15	³ H ₅	_
Yb	f^{13}	² F _{7/2}	8/7	2.57	² F _{5/2}	10,000

4f free ion magnetism

- By applying a magnetic field, the degeneracy of the 2J+1 levels in each ${}^{2S+1}L_J$ is removed \rightarrow it provides a series of M_J levels : $-J \le M_J \le +J$
- The corresponding magnetic moments are:

$$\mu_J = \mu_{\rm B} g_J \boldsymbol{J}$$

• With the Landé factor that is :

$$g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$$

• And the magnetic susceptibility that follows the Curie law: (except Eu³⁺ and Sm³⁺)

$$\chi^{M} = \frac{N_{\rm A}g_J^2\mu_{\rm B}^2}{3kT}J(J+1)$$

with $N_A \mu_B^2 / 3k_B T = 1/8$

Ex: for Dy³⁺ (S=5/2, L= 5, J=15/2), the ⁶H_{15/2} multiplet is split in 2J+1 M_J states= 16 g_J= 4/3 and χ_MT_(300K) = 14.17 emu.mol⁻¹

37

Lanthanides and Actinides in Molecular Magnetism; Ed. R.A. Layfield, M. Murugesu, Wiley-VCH, 2015 rench School, Bangalore, 2018, K. BERNOT

4*f* anisotropy in a crystal field

- Spin is isotropic but orbital component reflects the symmetry of the system and can be anisotropic
- Magnetic anisotropy → depends of Spin Orbit coupling (SO or LS coupling) and Crystal field (CF)
- For 3d ions: orbital moments are quenched because LS << CF
- For 4f ions : orbital moments are unquenched because LS >> CF
 → the total angular momentum J is a good quantum number

Group	Shell	Electronic repulsion	LS coupling	CF splitting
Fe	3 <i>d</i>	10 ⁵	10	10 ³
Pd, Pt	4 <i>d</i> , 5 <i>d</i>	104	10 ²	104
RE	4 <i>f</i>	10 ⁵	10 ³	10^{2}

39

f anisotropy in a crystal field

Lanthanides and Actinides in Molecular Magnetism; Ed. R.A. Layfield, M. Murugesu, Wiley-VCH, 2015 rench School, Bangalore, 2018, K. BERNOT

4f anisotropy in a crystal field

• For 161 Dy":

Basics of Lanthanides luminescence

Basics of Lanthanides luminescence

- *f-f* transitions are Laporte forbidden so emissions are weak
- Ln^{III} emissive level can be fed using an organic ligand as energy absorber (UV). If the triplet(s) state(s) of the ligand is (are) at an appropriate energy → transfer toward the Ln^{III} → antenna effect
- Antenna effect enhance Ln^{III} emissions by several orders of magnitude

Landscape of Dy(III) ion portraying the energy levels associated in:

- Optical absorption (Abs)
- Magnetic circular dichroism (MCD)
- Far infra-red (FIR)
- Inelastic neutron scattering (INS)
- Electron paramagnetic resonance (EPR)
- Emission
- and Raman spectroscopy

A.K. Bar et al., Coord. Chem. Rev. 2018, 367, 163

Single ion anisotropy

Single ion anisotropy of lanthanide ions is linked to the charge distribution on the lowest J states whose shape is based on the quadrupole moment:

$$Q_2 = \alpha_J \left\langle r^2 \right\rangle_{4f} \left(2J^2 - J \right)$$

r: 4*f* shell radius α_j: second order Stevens coefficient

Ln ³⁺	Ground state	α_J	β _J	γј	Q_2
Ce	² F _{5/2}	$\frac{-2}{5 \cdot 7}$	$\frac{2}{3^2 \cdot 5 \cdot 7}$	0	-0.686
Pr	³ H ₄	$\tfrac{-2^2\cdot13}{3^2\cdot5^2\cdot11}$	$\frac{-2^2}{3^2\cdot 5\cdot 11^2}$	$\frac{2^4 \cdot 17}{3^4 \cdot 5 \cdot 7 \cdot 11^2 \cdot 13}$	-0.639
Nd	⁴ I _{9/2}	$\tfrac{-7}{3^2\cdot 11^2}$	$\frac{-2^3 \cdot 17}{3^3 \cdot 11^3 \cdot 13}$	$\frac{-5\cdot17\cdot19}{3^3\cdot7\cdot11^3\cdot13^2}$	-0.232
Pm	⁵ I ₄	$\frac{2\cdot 7}{3\cdot 5\cdot 11^2}$	$\frac{2^3\cdot 7\cdot 17}{3^3\cdot 5\cdot 11^3\cdot 13}$	$\frac{2^3 \cdot 17 \cdot 19}{3^3 \cdot 7 \cdot 11^2 \cdot 13^2}$	0.202
Sm	⁶ H _{5/2}	$\frac{13}{3^2 \cdot 5 \cdot 7}$	$\frac{2\cdot 13}{3^3\cdot 5\cdot 7\cdot 11}$	0	0.364
Eu	$^{7}F_{0}$	0	0	0	-
Gd	⁸ S _{7/2}	0	0	0	0
Tb	$^{7}F_{6}$	$\frac{-1}{3^2 \cdot 11}$	$\frac{2}{3^3 \cdot 5 \cdot 11^2}$	$\frac{-1}{3^4\cdot 7\cdot 11^2\cdot 13}$	-0.505
Dy	⁶ H _{15/2}	$\frac{-2}{3^2 \cdot 5 \cdot 7}$	$\frac{-2^3}{3^3\cdot 5\cdot 7\cdot 11\cdot 13}$	$\frac{2^2}{3^3 \cdot 7 \cdot 11^2 \cdot 13^2}$	-0.484
Но	⁵ I ₈	$\tfrac{-1}{2\cdot 3^2\cdot 5^2}$	$\tfrac{-1}{2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13}$	$\frac{-5}{3^3 \cdot 7 \cdot 11^2 \cdot 13^2}$	-0.185
Er	⁴ I _{15/2}	$\frac{2^2}{3^2\cdot 5^2\cdot 7}$	$\frac{5}{3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13}$	$\frac{2^3}{3^3 \cdot 7 \cdot 11^2 \cdot 13^2}$	0.178
Tm	³ H ₆	$\frac{1}{3^2 \cdot 11}$	$\frac{2^3}{3^4\cdot 5\cdot 11^2}$	$\frac{-5}{3^4\cdot 7\cdot 11^2\cdot 13}$	0.427
Yb	$^{2}F_{7/2}$	$\frac{2}{3^2 \cdot 7}$	$\frac{-2}{3\cdot 5\cdot 7\cdot 11}$	$\frac{2^2}{3^3 \cdot 7 \cdot 11 \cdot 13}$	0.409

J. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, 2015

Isotropic

Q₂>0, prolate electron distribution Q₂<0, oblate electron distribution

Single ion anisotropy and CF

Carlin, R. J. *Magnetochemistry*; Springer: Berlin, **1986** J. D. Rinehart., et al. *Chem. Sci.*, **2011**, 2, 2078 J. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, **2015**

Example of a prolate ion (Yb^{III}):

A given CF orient the electronic charge cloud in a energetically favorable direction

Planar Anisotropy Stabilization of the highest *M*,

Axial Anisotropy Stab. of the lowest *M*_j

Single ion anisotropy and CF

• "Oblate/Prolate model"

A. Ben Khélifa., et al. Dalton Trans., 2015, 44, 16458

48

S. Gómez-Coca., et al. *Coord. Chem. Rev*. 289-290, **2015**, 379 J. Liu ., et al. *J. Am. Chem. Soc.* **2016**, 138, 5441

Quantification of Lanthanide(III) anisotropy in mononuclear molecules

Quantification of the anisotropy

- EPR
- Polarized neutron diffraction (PND)
- Single crystal magnetic measurements

→Cantilever magnetometry

→ Angle-resolved magnetometry

J. Jung, et al., Chem. Commun 2014, 50, 13346

K. Bernot, et al., J. Am. Chem. Soc. 2009, 131, 5573

J. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, 2015

Angle-resolved magnetometry on SMM

K. Bernot, et al., J. Am. Chem. Soc. 2009, 131, 5573

Indo – French School, Bangalore, 2018, K. BERNOT

53

Angle-resolved magnetometry on SCM

L. Bogani, *et al., Angew. Chem.* **2005**, 44, 5817 K. Bernot, *et al., J. Am. Chem. Soc.* **2006**, 128, (24), 7947 K. Bernot, *et al., Inorg. Chim. Acta*, **2007**, *360*, (13), 3807

Angle-resolved magnetometry on SCM

Temperature dependance of the chain anisotropy

Dy^{III}-Fe^{II}-Dy^{III} and Dy^{III}-Ni^{II}-Dy^{III} SMMs
 →Fe^{II} diamagnetic
 →Ni^{II} paramagnetic

- Ferromagnetic Dy-Dy coupling (dipolar)
 via Δχ_MT method
 - Anisotropy axes are orthogonal → coupling reduces SMM properties

→ Relative orientation of anisotropy axes is a key parameter

F. Pointillart, et al., Chem. Eur. J. 2007, 13, 1602

Institut des

R CNRS de Rennes

Sciences Chimiques

• Dy^{III} triangle with non-magnetic ground state

J. K. Tang, et al., Angew. Chem.-Int. Edit. 2006, 45, 1729
L. F. Chibotaru, et al. Angew. Chem. Int. Ed. 2008, 47, 4126
J. Luzon, et al, ; Phys. Rev. Lett. 2008, 100, 247205.

New class of molecules → toroics SMM

Molecular Magnetism : from 3d to 4f single-molecule magnets

Rate-independant

- M_s: Magnetization @ saturation
- M_R: Remanent magnetization M@(H=0) •
- H_c: Coercitive field H@(M=0) •

Institut des

Magnetic hystereses

Nanoparticle

- Hard (Hc > 5000 Oe) or soft magnetlike hysterese (Hc < 125 Oe)
 - Hard-magnet-like hysterese with quantum effect (molecular quantum tunneling of the magnetization)

Toward magnetic materials

Spin reversal in **Superparamagnets**

Nanoparticle

Single-Molecule Magnet

Thomas, L. et al, . Nature 1996, 383, 145-147.

J. Tang, P. Zhang, Lanthanide Single Molecule Magnets , Springer, 2015

Whitehead, G. F. S. et al., Angew. Chem.-Int. Ed. 2013, 52, 9932.

Spin reversal in Superparamagnets

3d-SMM

4f-SMM

Optimizing magnetic anisotropy

Polynuclear SMM: still a lot to do with 3d ions, but 4f ions are more and more used to design SMM

Mn₆: Milios, C. J.; *J. Am. Chem. Soc.* 2007, *129*, 2754
 Mn₁₉: AkoO, A. M.;. *Angew. Chem.-Int. Ed.* 2006, *45*, 4926
 Mn₈₄: Tasiopoulos, A. J.; *Angew. Chem.-Int. Edit.* 2004, *43*, 2117
 J. Tang, P. Zhang, Lanthanide Single Molecule Magnets , Springer, 2015
 Zhang P. et al., Coord. Chem. Rev., 2013, 257, 1728

In 2003, a revolution in the design of SMM:

- No need for « giant spins » via polynuclear molecules
- Spins of 4f ions are enough and their anisotropy is huge

Spin optimization $\rightarrow \rightarrow \rightarrow$ Anisotropy optimization

The breaktrough of TbPc₂

In 2003, a revolution in the design of SMM:

- SMM behavior is observable if N=1 provided its anisotropy is huge : Single Ion Magnet

 → better called « mononuclear SMM »
- Dilution in isomorphous matrix (Y^{III}) is possible and enhances magnetic relaxation
- Sublevels structure (spilling of M_j) can be determined by ¹H NMR

Ishikawa, N.; J. Am. Chem. Soc. 2003, 125, 8694

The breaktrough of TbPc₂

Ln =

ть

D٧

Ho

Yb

Tm

Wide possibilities of chemical engineering of LnPc₂

Molecule	U _{eff} /cm ⁻¹	τ ₀ /s
[Tb(Pc-OPh)2]	504	2.16×10^{-11}
$[\text{Tb}(\text{Pc-Oph})_2]^- \text{N}(\text{Me})_4^+$	442	8.2×10^{-11}
[Tb(Pc-Oph) ₂] ⁻ N(Bu) ₄ ⁺	394	3.45×10^{-10}
[Tb(Pc)(Pc-Oph)]	652	1.1×10^{-11}
[Tb(Pc)	450	3.0×10^{-10}
$(Pc-Oph)]^- N(Me)_4^+$		
[Tb(Pc)(Pc-Oph)] ⁻ N(Bu) ₄ ⁺	487	7.8×10^{-11}
[Tb(Pc)(Pc-Bu)]	642	2.21×10^{-11}
$[Tb(Pc)(Pc-Bu)]^- N(Bu)_4^+$	400	4.78×10^{-10}
[Tb(Pc-ODOP)2] (order)	480	
[Tb(Pc-ODOP)2] (disorder)	422	
$[\text{Tb}(\text{Pc-a})_2]^- \text{N}(\text{Bu})_4^+$	445	6.35×10^{-11}
$[\text{Tb}(\text{Pc-b})_2]^- \text{N}(\text{Bu})_4^+$	428	1.34×10^{-10}
$[\text{Tb}(\text{Pc-c})_2]^- \text{N}(\text{Bu})_4^+$	463	2.22×10^{-11}
[Tb(Pc-OBu)2]2	230	1.1×10^{-10}
[Dy(Pc-OBu) ₂] ₂	44	1.3×10^{-5}
[Dy(Pc-CN) ₂]	40	

Bagai, R.; Christou, G., "The Drosophila of Single-Molecule Magnetism: Mn_{12} . Chem. Soc. Rev. 2009, 38, 1011.

TbPc₂ is the 4*f*-SMM drosophila

72
Playing withTbPc₂

Gonidec M, et al., J. Am. Chem. Soc. 2010, 132(6), 1756

Indo – French School, Bangalore, 2018, K. BERNOT

Playing withTbPc₂

Phtolocyanine analogues (tetraphenylporphyrin) to test the electrostatics around Tb^{III} [TbH(TPP)₂]:

Tanaka D, et al. Chem Commun 2012, 48(63):7796.

Indo – French School, Bangalore, 2018, K. BERNOT

The breaktrough of TbPc₂

а

(a)

Wang, H. *et al.,* **Coord. Chem. Rev. 2016**, *306* Wang, H. *et al.* **Chem. Sci. 2014**, *5*, 3214, 195. Katoh, K. *et al.*, **Chem. Eur. J. 2017**, *23*, 15377 Horii, Y., *et al.* **Chem. Eur. J. 2018** Thiele , S., *et al.* **Science 2014**, 344, 1135 K. Katoh, et al., **Dalton Trans. 2010**, 39 4708

Indo – French School, Bangalore, 2018, K. BERNOT

Ln-POM

• Ln polyoxometalates \rightarrow the second 4*f*-SIM family

76 Baldoví, J. J.; et al., In *Advances in Inorganic Chemistry*; Academic Press, 2017; Vol. 69; pp 213-249. Indo – French School, Bangalore, 2018, K. BERNOT

Low coordinate Ln^{III}

• via grafting on SIO₂ nanoparticules

Low coordinate Ln^{III}

• via encapsulation in fullerenes derivatives

F. Liu et al., *Nat. Commun.* **2017** 8, 16098 Bar A. K. et al., *Coord. Chem. Rev.* **2018**, 367, 163

Electrostatics optimization in 4*f*-SMM

 Going for polynuclear 4*f*-SMM enhance the possibility of electrostatic modulation of the Ln^{III} surrounding (ancillary or bridging ligand tunning)

D. Aravena et al. Inorg Chem 2013, 52(23), 13770

Electrostatics optimization in 4*f*-SMM

Ln^{III} coupling

$[\{[(Me_3Si)_2N]_2Ln(THF)\}_2(\mu-\eta^2:\eta^2-N_2)]_2$

- Need for radical ligands otherwise 4*f*-4*f* interactions are weak (dipolar + very small exchange)
- Need for small ligands → N₂³⁻

Rinehart, J. D.; *et al.* J. Am. Chem. Soc. 2011, 133, 14236 Rinehart, J. D.; *et al.*, Nat. Chem. 2011, 3, 538 Optimizing magnetic anisotropy

Theoretical approach of U_{eff}

- For a Dy-O distance of 1.74 Å, theoretical value of U_{eff} can be as high as $U_{eff} \approx 3000$ K
- If under-barrier relaxation mechanisms are suppressed, very high T_B can be targeted

Ding, Y.-S. et al., Angew. Chem.-Int. Ed. 2016, 55, 16071

Closer to the perfect Dy symettry

Indo – French School, Bangalore, 2018, K. BERNOT

Ding, Y.-S. et al., Angew. Chem.-Int. Ed. 2016, 55, 16071

Indo – French School, Bangalore, 2018, K. BERNOT

Going above $N_{2(I)}$ temperature region

Neutral aromatic species

Benzene 6C, 6π

Naphthalene 10C, 10π

Azulene 10C, 10π

 $\frac{1}{4}$

LnCOT family: a curiosity but maybe more.....

Pentamethylcyclopentadienide (C_5Me_5 , Cp*) Cyclooctatetraenide ($C_8H_8^{2-}$, COT).

Huang W, et al., Nat Commun 2013, 4, 1448. Jiang S-D, et al., J. Am. Chem. Soc. 2011, 133(13), 4730.

Indo – French School, Bangalore, 2018, K. BERNOT

Blocking temperature as high as $T_B = 60K$

U_{eff}= 1760 K Cp-Dy-Cp= 152.8°

Indo – French School, Bangalore, 2018, K. BERNOT

Movie

86

 $[Dy(O^{t}Bu)_{2}(Py)_{5}]^{+}$, angle O-Dy-O= 178.9°, U_{eff}= 1815 K, T_B=14K

 $[Dy(Cp^{ttt})_2]^+$ angle Cp-Dy-Cp= 152.8°, U_{eff}= 1760 K, T_B=60K

• Optimization of spin-phonon coupling by increasing the « rigidity » of the molecule skeleton (vibration modes)

Ding, Y.-S. et al., *Angew. Chem.-Int. Ed.* **2016**, *55*, 16071 Goodwin, C. A. P.;. *Nature* **2017**, *548*, 439

Guo, F.-S, et al., *Science* 2018.

MINB

Indo – French School, Bangalore, 2018, K. BERNOT

Underbarrier relaxation pathways are still present at low T but for relaxation times that are extremely slow

movie

Going above $N_{2(I)}$ temperature region

$[(Cp^{iPr5})Dy(Cp^*)]^+$ angle Cp-Dy-Cp= 165.5°, U_{eff}= 2217K, T_B=80 K

Hard magnet-like behavior

1 able 59. Coefficive fields for 5 at different sweep fate at 2 K, coffesponding to Fig. 5	Table S9. (Coercive field	s for 3 at di	fferent sweep	rate at 2 K. c	corresponding	to Fig.	S49
---	-------------	----------------	---------------	---------------	----------------	---------------	---------	-----

Sweep rate / Oe s ⁻¹	Coercive field / Oe
700	> 70000
350	58146
200	49741
100	41722
50	35632
25	30893

1. Field-cooled (FC, blue line) and zero-field-cooled (ZFC, red line) variable-temperature ic susceptibility for 3nv under 1000 Oe DC filed in warm mode (2 K/min) from 2 to 100

Table S10. Coer	cive fields at different swee	p rate at 77 K, corresponding	; to Fig. S50.
	Sweep rate / Oe s ⁻¹	Coercive field / Oe	
	700	5802	
	350	2946	
	200	1688	
	100	825	
	50	398	
	25	191	

0.006

Guo, F.-S, et al., Science 2018.

Indo – French School, Bangalore, 2018, K. BERNOT

 $[Dy(O^{t}Bu)_{2}(Py)_{5}]^{+}$, angle O-Dy-O= 178.9°, U_{eff}= 1815 K T_B=14 K $\begin{array}{ll} [Dy(Cp^{ttt})_2]^+ & [(Cp^{iPr5})D] \\ angle Cp-Dy-Cp= 152.8^\circ, & angle Cp \\ U_{eff}= 1760 \ K & U_{eff}= 221 \\ T_B=60 \ K & T_B=80 \ K \end{array}$

[(Cp^{iPr5})Dy(Cp*)]⁺ angle Cp-Dy-Cp= 165.5°, U_{eff}= 2217K, T_R=80 K

- Optimization of spin-phonon coupling by increasing the « rigidity » of the molecule skeleton (vibration modes)
- Optimization of the M_J= 15/2 stabilization (electrostatics around Dy^{III}) by increasing the X-Dy-X angle (closer to 180°)

Key Points

- Rare-Earth (RE) elements are not rare
- RE have similar chemical properties
- Their high cost is due to the separation cost of indiv. RE oxide and to the high demand
- LS (spin-orbit)> CF (crystal field), J is a good quantum number
- M_s states on 3d, M_j states on 4f, (energy barrier is DS² and U_{eff} resp.)
- *M_j* states can be investigated by luminescence spectroscopy
- Magnetic anisotropy can be investigated by angular-resolved magnetometry
- Spin and magnetic anistropy are the two ingredients for SMM behavior
- Giant spins (polynuclear molecules) do not always provide SMM behavior
- Strong anisotropy of single-ion can be enough to provide SMM behavior
- TbPc₂ was the first familly of 4*f*-SMM
- Strong axiality of the electrostatics around Dy^{III} is needed
- Vibration modes (molecule rigidity) could be responsible for under-barrier relaxation
- Organometallic 4f molecules verify these last two requisites and affords high-performance 4f-SMM
- The quest for stable (air, moisture,...), depositable (surfaces) and adressable SMMs continues...

Somes references on 4*f*-SMM

- Bar, A. K. et al., Coord. Chem. Rev. 2018, 367, 163
- Zhang P. et al., Coord. Chem. Rev., 2013, 257, 1728
- Woodruff, D. N., et al. Chem. Rev. 2013, 113, 5110
- F. Pointillart, et al. *Coord. Chem. Rev.*, 2017, 346, 150
- Lanthanides and Actinides in Molecular Magnetism; Ed. R.A. Layfield, M. Murugesu, Wiley-VCH, 2015
- Kahn, O. Molecular Magnetism; Wiley-VCH: Weinheim, 1993
- Du Trémolet De Lacheisserie, E. Magnétisme, Presses Universitaires de Grenoble, 1999
- Benelli, C.; Gatteschi, D. Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, 2015
- Verdaguer, M.; Launay, J.-P. *Electrons in Molecules; from Basic Principles to Molecular Electronics;* OUP, 2013
- Ribas, J. Coordination Chemistry; Wiley-vch: Weinheim, 2008
- Carlin, R. J. *Magnetochemistry*; Springer: Berlin, 1986
- Clérac, R.; Winpenny, R. E. P. Single-Molecule Magnets and Related Phenomena. In 50 Years of Structure and Bonding the Anniversary Volume, Springer, 2016; 35
- J. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, 2015