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Single-molecule Magnets 
▪These are compounds of exchange coupled clusters of paramagnetic metal

ions and and are often encapsulated by organic ligands

▪These molecules retain their spin orientation even after switching off the

magnetic field.

RT

H

Cooling

Switching off H

Slow relaxation

Equilibrium state

▪No intermolecular interaction is necessary for this phenomenon to occur

▪Once magnetized, SMMs show Slow Relaxation of Magnetization which is

of purely molecular origin
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Single-Molecule Magnet (SMM)1

[Mn12O12(ac)16(H2O)4]

1: Caneschi, A. et al. JACS 1991, 113, 5873

Single-Ion Magnet (SIM)3

[(tpaMes)Fe]-

2: Clerac, R. et al. JACS 2002, 124, 12837 

Types of Molecular Magnets
Single-Chain Magnet (SCM)2

3: Freedman, D. E. et al. JACS 2010, 132, 1224
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Organometallic SMMS

TB = 60 K

Ueff = 1223 cm-1

Synthesis

Layfield, R. A., et. al., Angew. Chemie Int. Ed. 2017, 56, 11445; Mills, D. P. et. al., Nature, 

2017, 548, 439 5



Organometallic SMMs

Layfield et al., Science, 2018, ASAP



Requirements for SMM

➢Electronic ground state should be bistable

➢Large ground state spin

➢Large uniaxial (negative) magnetoanisotropy (Ising-type)

(Negative zero field splitting  parameter D)

U = DS2 (for integer spin); U = DS2-1/4 (for non-integer spin) 

Higher the barrier the magnetization retained for a  longtime

U = DS2

Relaxation by either quantum

tunneling magnetization or

thermal energy



Magnetization and Magnetic Relaxation

F. Neese, D. A. Pantazis. Faraday Discuss. 2011, 148, 229



Magnetic Relaxation
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Coord. Chem. Rev. 2018, 367, 163



Experimental Characterization of SMMs
1. AC susceptibility measurements

Due to blocking of magnetization, SMMs show a frequency-dependent 

out-of-phase signal in ” vs T plot (called as slow relaxation of magnetization)

ac = ’ + i”

2. Hysteresis measurement

Magnetisation vs field plot
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Determination of Energy Barrier

At the peak maxima τ = 1/2πνac

τ = τ0 exp(ΔE/kT)

ln τ = ln τ0 + ΔE/kT

ΔE/k = Ueff

❑ If the relaxation follows only thermal 
activated mechanism

Quantum regime
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Linear Trinuclear 3d-4f-3d 
Systems
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❖Lanthanides have large ground state spins; many are

magnetically anisotropic

❖Combination of 3d and 4f-metal ions may increase the ground

spin state through d–f magnetic interactions



Phosphorus-based multi-dentate ligand

Inorg. Chem. 2007, 46, 5140; Inorg. Chem. 2008, 47, 4918; Dalton Trans. 2008, 43, 5962 

Inorg. Chem. 2009, 48, 1148 
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LH3  + M(II) salt LHM

Ln(III) salt

Heterometallic complex

Where [LHM] is metalloligand

Our strategy



Can we use transition metal ion for 

anisotropy and lanthanide ion for high 

spin? 

Co(II) S = 3/2

Gd(III) S = 7/2



Co2Gd

Inorg. Chem. 2007, 46, 5140



Distorted icosahedral arrangement

Core view of L2Co2Gd



AC susceptibilty measurement at zero DC field
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represent an Arrhenius fit of the data

Energy gap  = 27.4 K; 0 = 1.5 x10-7s at 1000 Oe field

Energy gap  = 27.2 K; 0 = 1.7 x10-7s at zero Oe field 

Temp. dependent AC susceptibility 
measurement at 1000 Oe  at various frequency



Co2Ln SMMS

Energy barrier (K) 0

Co2Gd 27.2 K at 0 Oe

27.4 K at 1000 Oe

1.7 x 10-7 s

1.5 x 10-7 s

Co2Tb 24.2 K at 0 Oe

25.8 K at 1500 Oe

5.1 x 10-6 s

3.7 x 10-6 s

Co2Dy 18.9 K at 0 Oe 5.5 x10-6 s

Co2 Ho 8 K at 0 Oe 1.3 x 10-4 s

Inorg. Chem. 2007, 46, 5140; Inorg. Chem. 2009, 48, 1148 



Other Trinuclear 3d/4f 

Complexes
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Other Trinuclear Complexes
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Synthetic Scheme of CoII
2Ln Compounds
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Molecular Structure 
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Binding mode 
of the ligand 

Co1-Dy1-Co2  177.9(1)°

CoII-DyIII ~ 3.495 Å

Co-O-Dy ~ 105°
Twisted planar fragment of the two 
four-membered CoDyO2 rings



AC Susceptibility Plot

Ac susceptibility measurements

as a function of the temperature

at different frequencies and under

zero-external field show that only

complex 1 exhibits slight

frequency dependence

Ac susceptibility for 

complex 1 measured under 

1000 Oe applied dc field.
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Probable reasons behind this observation

(i) A comparatively weaker anisotropy of the LnIII ions induced by the

ligand-field effects.

(ii) The non-favourable orientation of the main local anisotropies axes of

CoII and LnIII ions leading a relatively weak anisotropy for the whole

molecule. In fact, complexes 1-4 are not centrosymmetric and the
diphenoxo-bridging fragments are turned each other by 64.75⁰ (non

parallel main anisotropy axes of the CoII ions), the complexes of the

other two series are centrosymmetric (parallel main anisotropic axes of

the CoII ions).

(iii) The existence of a very efficient zero-field quantum tunneling of
magnetization (QTM) facilitated by an extended 2D network of

hydrogen bonds.
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NiII2Ln
III
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Molecular Structure:NiII2DyIII
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The  trinuclear core of 3 showing twisted planer 
fragment of the two four-membered NiDyO2 rings

Distorted squre aniprism geometry Distorted octahedral geometry
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Magnetic Studies
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Replacing the Paramagnetic Ion with 
ZnII/MgII
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Chem. Eur. J. 2015, 21, 6449-64 33



a) b)

Molecular Structure 
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Ueff =72(2) K; o = 8 x 10-9 s (SR)

Ueff = 61(2)K; o = 4 x 10-7 s (FR)

1 under 1000 Oe applied dc field

Ueff = 67(3) K with o = 4.5 x 10-8 s for 4

under 1000 Oe applied dc field 

AC Susceptibility Plot
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Do Intermolecular Magnetic Dipolar Interactions Influence

the relaxation of the magnetization?

Can we unequivocally demonstrate that the relaxation

process is single molecular in origin?.

We have performed ac susceptibility measurements on 1:10

Dy:Y magnetic diluted samples of of 1 and 4, named as 1'

and 4'

These samples were prepared through crystallization with the

diamagnetic and isostructural Mg2Y and Zn2Y complexes

using a Dy/Y molar ratio of 1:10 (the amount of Dy present in

the dilute sample was calculated to be 10.8 and 10.2% for 1'

and 4' 36



Ueff = 90(7) K and o = 1.1 x 10-9 for 1' Ueff = 106(4) K and o = 5.2 x 10-10 for 4'

AC Measurements for Dilute Samples 
Under 1000 Oe DC Field
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A Bent Co(III)-Dy(III) system

Chem. Eur. J. 2015, 21, 4926-30
Dalton Trans. 2016, 45, 9235-49

 = 88 K; 
0 = 1 x10-8 s
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3d/4f Families
Inorg. Chem. 2013, 52, 13078

Inorg. Chem. 2016, 55, 8422

Inorg. Chem. 2014, 53, 6524 Chem. Eur. J. 2017, 23,16621
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4f Complexes
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Ln4 Families

Inorg. Chem. 2013, 52, 6346 Inorg. Chem. 2014, 53, 3417

Inorg. Chem. 2014, 53, 3385
Chemistry Eur. J. 2016, 22, 18532
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Macrocycles

42

Chem. Eur. J. 2015, 21, 16955 Chem. Eur. J. 2017, 23, 5154 



Oblate shaped Ln(III)

Z Y

X

R=H= Pc

Ln SIMs Ueff (cm-1)

[Bu4N][Pc2Tb] 230

[Pc2Tb]0 410

[(Pc(OEt)8)2Tb][SbCl

6]

550

[Tb((O-(C6H4)-p-

tBu)8 Pc)(Pc′)]

652

Lanthanide Single-Ion Magnet

Ishikawa, N., et. al., J. Am. Chem. Soc. 2003, 125, 8694
43



Lanthanide (III) Ions in SMMS

Tb(III) Dy(III) Ho(III) Er(III)

4fn 4f8 4f9 4f10 4f11

Spin-

Orbit 

Ground 

Term

7F6
6H15/2

5I8
4I15/2

Free-ion 

g Value
3/2 4/3 5/4 6/5

Many Lanthanide ions have a large spin and an 

unquenched orbital angular momentum
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How to harvest single ion anisotropy of Lanthanide(III) 

ions in complexes: Ligand design

Figure: Quadrupole approximations of the 4f-shell electron 

distribution for the tripositive lanthanides

Recipe to maximize the anisotropy:

✓ For oblate ions the crystal field should be such that the ligand 

electrons are concentrated above  and below the xy plane

✓ For prolate ions  an equatorial coordination geometry is preferred

45

Long, J. R. Chem. Sci. 2011, 2, 2078



Pentagonal Bipyramidal (D5h) Ln
III complexes

▪ Zero field QTM is inherent in many LnIII complexes.

---- transversal anisotropic components (gx, gy)

---- intermolecular magnetic interactions

---- hyperfine interactions

▪ Strict group-theoretical rules suggests that an ideal axial symmetry 

can be achieved in point groups C∞v, D∞h, S8, D4d, D5h, D6d

Zheng, Y.-Z. et al., Angew. Chem. Int. Ed. 2016,
55, 16071

Ueff = 1815 K 

TB = 14 K
Ueff = 1191 K 

TB = 9.5 K

Tong, M. L. et al. J. Am. Chem. Soc. 2016, 
138, 5441

46

Murugavel, R. et al. Chem. Sci., 2016,7, 5181

TB = 20 K
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Pentagonal bipyramidal complexes

J.-P. Sutter and coworkers, Chem. Commun., 2015, 51, 3616

D = −13.3 cm−1 

D = −10.7 cm−1

Ueff = 34 cm-1 (3000 Oe)



An approach for a rigid pentagonal plane

Scheme 1: Synthesis of ligand LH4
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SCXRD: Solid state structures

CShM of 

DyIII
Geometry

CShM of 

TbIII

1.210 PBPY-7 1.345

6.725 JPBPY-7 6.878

7.276 CTPR-7 7.457

PBPY-7 = Pentagonal bipyramid (D5h); JPBPY-7  = Johnson 

pentagonal bipyramid J13 (D5h); CTPR-7 = Capped trigonal 

prism (C2v) 49



: Magnetic anisotropy axis

Side view Top view

Molecular anisotropy axis

N. F. Chilton and co-workers, Nat. Commun. 2013, 4, 2551 
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AC Magnetic susceptibility
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A rigid pentagonal plane

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 10 100 1000


M

'' 
(c

m
3
m

o
l-1

)

Frq (Hz)

17.0 K

4.0 K

0.0001

0.001

0.01

0.1

1

0 0.05 0.1 0.15 0.2 0.25 0.3


 (

s
)

1/T (K-1)

y = 1.9074e-6 * e^(69.757x)   R= 0.99757 

The comparatively low energy barrier 

may be due to weaker axial CF Figure: Out of phase susceptibility and Arrhenius plot

Ueff = 70 K (diluted)

0 = 1.9 × 10−6 s

Inorg. Chem. 2018, 57, 2398
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Summary

➢ A new family of molecule-based magnetic materials

➢ Heterometallic trinuclear 3d-4f compounds

➢ Homometallic lanthanide assemblies: Variation in 

nuclearity and structures

➢ Efforts to assemble PBP mononuclear Lanthanide 

complexes
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