Menu
aetukuri

[previously at IBM Research, Almaden (PostDoc) and Stanford University (PhD)]
Assistant Professor
Solid State and Structural Chemistry Unit,
Room: Annex 208, Indian Institute of Science, Bangalore, India – 560012
email: phani@sscu.iisc.ernet.in
Phone: +9180-2293-3534

We are constantly looking for good students. Please email me or drop by my office if you would like to discuss more about my research.

Research Objective: The overarching research objective is to develop novel materials and devices for energy-efficient electronics and energy storage with particular emphasis on high energy density batteries. Thin film synthesis techniques would be employed for application-driven design of transition metal compound thin films and heterostructures for potential applications in energy-efficient electronics, energy storage and electrocatalysis.

Research Topics of Interest

  1. Energy Storage, with emphasis on High Energy Density Batteries (including solid-state Li-ion, metal-oxygen and multivalent-ion batteries)
  2. Electroactive Heterostructures and Surfaces for Electrocatalysis
  3. Thin Films and Heterostructures for 2D and Energy-Efficient Electronics
  4. Defect Physics, Ion Transport and Ionic Devices

Representative Publications

  1. Gray, A., Jeong, J., Aetukuri, N., et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Rev. Lett. 116116403 (2016).
  2. Abate, I., Thompson, L., Kim, H., Aetukuri, N. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes With a Protic Additive. J. Phys. Chem. Lett. 7 2164 (2016).
  3. Aetukuri, N., et al. Flexible ion-conducting composite membranes for lithium batteries. Ener. Mater. 5 1500265 (2015).
  4. Jeong, J., Aetukuri, N., et al. Giant reversible structural changes in a correlated-electron insulator induced by ionic liquid gating. Natl. Acad. Sci. USA 112 1013 (2015).
  5. Aetukuri, N., et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in nonaqueous Li-O2Nature Chem. 7 50 (2015).
  6. Martens, K., Aetukuri, N., et al. Improved metal-insulator transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates. Phys. Lett 104 081918 (2014).