Student Seminar
Name: Mr. Debopam Sarkar
Title: Shrinking the Scale: Exploring Electron Diffraction from Micro to Nano
Date & Time: Thursday, 28th August 2025 at 4.10 p.m.
Venue: AG-09/11 Lecture Hall, Chemical Sciences Building
Abstract:
Electrons, like X-rays and neutrons, are powerful probes for structural studies. Because of their strong interaction with matter, electron diffraction enables structure determination from crystals only a few hundred nanometers in size, far smaller than those required for conventional X-ray diffraction. Microcrystal electron diffraction (MicroED) thus allows materials that appear as powders in X-ray methods to be treated as usable single crystals.1, 2
Although strong electron–matter interactions complicate intensity analysis compared to X-ray diffraction, MicroED has emerged as a highly effective method for solving diverse structures with good accuracy.3 Over the past decade, it has been successfully applied to small inorganic compounds3 , organic molecules1, 4, extended frameworks2, 5, pharmaceutical drugs6 , and biomolecules of relatively low molecular weight that lie beyond the reach of conventional cryoEM imaging.
MicroED complements X-ray and neutron diffraction by extending structural studies into previously inaccessible regimes, bridging gaps between techniques. Its versatility is already reshaping approaches to crystallography, offering researchers a powerful means of studying scarce, fragile, or nanosized samples.7
Looking ahead, the ability of MicroED to uncover structural details at the nanoscale holds great promise for fields as varied as drug discovery, molecular electronics, and the development of novel quantum materials.
References:
-
1. Gruene, T.; Wennmacher, J. T. C.; Zaubitzer, C.; Holstein, J. J.; Heidler, J.; Fecteau-Lefebvre, A.; De Carlo, S.; Müller, E.; Goldie, K. N.; Regeni, I.; Li, T.; Santiso-Quinones, G.; Steinfeld, G.; Handschin, S.; van Genderen, E.; van Bokhoven, J. A.; Clever, G. H.; Pantelic, R., Angewandte Chemie International Edition 2018, 57 (50), 16313-16317.
-
2. Huang, Z.; Ge, M.; Carraro, F.; Doonan, C.; Falcaro, P.; Zou, X., Faraday Discussions 2021, 225 (0), 118-132.
-
3. Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T., ACS Central Science 2018, 4 (11), 1587-1592.
-
4. Pearce, N.; Reynolds, K. E. A.; Kayal, S.; Sun, X. Z.; Davies, E. S.; Malagreca, F.; Schürmann, C. J.; Ito, S.; Yamano, A.; Argent, S. P.; George, M. W.; Champness, N. R., Nature Communications 2022, 13 (1), 415.
-
5. Huang, Z.; Grape, E. S.; Li, J.; Inge, A. K.; Zou, X., Coordination Chemistry Reviews 2021, 427, 213583.
-
6. Svensson Grape, E.; Rooth, V.; Nero, M.; Willhammar, T.; Inge, A. K., Nature Communications 2022, 13 (1), 1984.
-
7. Li, J.; Sun, J., Accounts of Chemical Research 2017, 50 (11), 2737-2745